

SRv6 – a Short Introduction

Aki Anttila (@reformo.fi)

What is SRv6?

SRv6 background

• MPLS is good, well-known, well-supported, interoperable...

 ...and also complex, inadequate TE capabilities, depth of the label stack might be an issue, (is old and dusty)

Current state of SRv6 globally

Main RFC documents for SRv6

So...how does it work?

• The underlay network is pure IPv6

- "Standard" routing mechanisms, but let's stick to IS-IS (OSPFv3 is quite ok)
- External sources of policies can be used
- Aggregation is available and recommended to minimize the amount of control information and path calculations
- The overlay network is whatever is needed
 - BGP L3 VPNs (VRFs)
 - BGP-EVPN L2s or L3s
 - Service node insertion

IPv6 provides the capability to do *network programming* (i.e., which nodes should be traversed, which services should be used) through SIDs (Segment Identifiers) that are presented through IPv6 extension headers.

SID? SID-Prefix? Locator?

- SID-Prefix is the IPv6 address space that is used for SRv6 purposes
 - Unique Local Addresses (ULA) are recommended to prevent leaking
- Each node is allocated one or more locators depending on the needed services
 - These locators are "normal" IPv6 addresses and hence routable and aggregetable within the IGP domain
- Segment Identifier contains the instruction (function) within the locator to tell the device what to do with the traffic
 - E.g. SID <locator>::000A means "forward via VRF-table 1"
 - Note that the first instruction is the normal IPv6 header DA
 - And this is often sufficient for services to work!

IPv6 header

• The official name is "Segment Routing Extension Header, SRH"

Each SID (Segment List) is 128bits = 16bytes

In case of 6 segments, overhead is 6*16+8 bytes = 104 bytes

Within iMix traffic, this is about 30% additional overhead!

Therefore uSID!

uSID saves space!

• uSID is a compressed SID that does not include locator bits

- "default size" is 16 bits, other sizes can be used
- Normal IPv6 header DA holds up to 6 uSIDs
 - if more is needed, then SRH must be used

Outer DA: 2001:db8:0001:0002:0003:0004:0005:0006 uSID1 uSID2 uSID3 uSID4 uSID5 uSID6

Outer SRH: 2001:db8:0007:0008:0009:0010:0011:0012 uSID7 uSID8 uSID9 uSID10 uSID11 uSID12

What can be done with SIDs?

Since SID is a key to *network programmability*, everything can be programmed with it.

(However, do not mix with Netconf/Restconf/JSON etc. programmability)

Network level functions

Customer facing functions

An example of using SIDs

SRv6 policy behaviors

- SRv6 has two different behaviors
 - Headend (H.X) behaviour that happens on the *source* node
 - Endpoint (End.X) behaviour that happens on the *end* node
- Headend behaviors can be used to provide backbone services
 - E.g. H.Encaps (SR Headend with encapsulation in an SR policy), used with TI-LFA
- Endpoint behaviors are used to steer traffic in the edge of the SRv6 domain
- "MPLS-like" additional behaviors are also present Penultimate Segment Pop (PSP), Ultimate Segment Pop (USP) and Ultimate Segment Decapsulation (USD)

Examples of End behaviors

Behavior	Explanation (Per RFC 8986)
End	Endpoint. The SRv6 instantiation of a Prefix-SID.
End.X	Endpoint with L3 cross-connect. The SRv6 instantiation of an Adj-SID.
End.T	Endpoint with specific (IPv6) table lookup.
End.DT4	Endpoint with decapsulation and specific IPv4 table lookup, e.g., IPv4-L3VPN (equivalent to per-VRF VPN label).
End.DT6	Endpoint with decapsulation and specific IPv6 table lookup, e.g., IPv6-L3VPN (equivalent to per-VRF VPN label).
End.DX4	Endpoint with decapsulation and IPv4 cross-connect, e.g., IPv4-L3VPN (equivalent to per-CE VPN label).
End.DX6	Endpoint with decapsulation and IPv6 cross-connect, e.g., IPv6-L3VPN (equivalent to per-CE VPN label).
End.DX2	Endpoint with decapsulation and L2 cross-connect, e.g., L2VPN use case

SRv6 services in the backbone

Examples of the network-level possibilities

Topology Independent Loop Free Alternate (TI-LFA)

Flexible Algorithm (FlexAlgo)

Microloop Avoidance

Performance monitoring for link latency

Example – TI-LFA

- TI-LFA provides 100% coverage with 50 msec link and node protection through the usage of post-convergence path
 - Prevents suboptimal routing
 - Prevents transient congestion
 - Is computed automatically by IGP
 - Can be incrementally deployed
- Why now?
 - SR(v6) provides network programmability to steer traffic through post-convergence path LOOP FREE

Example – FlexAlgo (i.e. "slicing" the network)

• FlexAlgo can be used to provide paths with different properties

- Minimal delay, high BW, avoiding certain links etc.
- Each constraint forms own topology from the base network
- There are 256 FlexAlgos of which
 - 0 is the traditional IGP/SPF
 - 1-127 are reserved by IANA
 - 128-255 can be used by operator-defined constraints
- RFC 9350 defines extensions for IS-IS and OSPF for calculating constraint-based paths

SRv6 services for the customers

Flexible selection of services

• Traditional network services can be implemented on top of SRv6

- BGP-based L3 VPNs (traditional RFC 2547bis) constructs
- BGP-based EVPNs (as defined in RFC 7432) constructs
- These are defined in RFC 9252 (BGP Overlay Services Based on Segment Routing over IPv6 (SRv6))
- In addition, service elements can be inserted (service-chaining)
 - Based on IETF's Service Function Chaining architecture (RFC 7665)
 - SRv6 SID is used as the Network Service Header (NSH) to steer traffic to service functions

That's it! Q? Email: <u>aki.anttila@reformo.fi</u> OR Call: 040-7591631 Or sit with me at the dinner table!

reformo.fi