

Secure Internet Routing

Cigdem Senol | 22 June 2023 | nog.fi

BGP has some challenges ...

- It is only based on trust, no built-in security
- No verification of the correctness of prefixes or AS paths

RFC 4272 - "BGP Security Vulnerabilities Analysis"

Due to these vulnerabilities ...

Any AS can announce any prefix

Any AS can prepend any ASN to the AS path

- BGP announcements are accepted without validation
- Fake routing information may disrupt Internet routing!

For secure Internet Routing ...

- Do not be the cause!
 - Announce the right prefixes to the right peers
- Do not distribute others' mistakes or attacks!
 - Validate the routing information you receive
- Do not be the victim!
 - Take all the measures you can to protect your network

Have proper filters in place!

- Inbound filters
 - Detects configuration mistakes and attacks
 - Particularly from customer networks
- Outbound filters
 - Eliminates route leaks
- Filter routes with prefix or AS path filters
 - Manually or automatically with data from IRRs

Validate received routes!

Is the AS authorised to **originate** a certain IP prefix?

- The IRR system is in place to make informed routing decisions
 - Many transit providers and IXPs perform IRR filtering
 - Automation relies on the IRR being complete
- **RPKI** aims to complement and expand this effort
 - Validates the routes based on trusted, accurate and up-to-date RPKI data

Validate received routes!

Are BGP path attributes legitimate and correct?

- Requires validation of whole BGP path
- RPKI is a stepping stone to path validation!
- **BGPsec** (RFC 8205)
- **ASPA** (Autonomous System Provider Authorisation) (draft)

Internet Routing Registries (IRRs)

- Public routing policy databases
 - Declarations of BGP announcements, connected peers and routing policies
- Many IRR databases exist, mostly mirroring each other
 - RIPE, APNIC, RADB, JPIRR, Level3, NTTCom, others
- Tools available that get the policy data from IRRs
 - IRRToolset , IRRPT, bgpq4

Generating prefix filters from IRRs

DEMO: Generating BGP filter with bgpq4

\$ bgpq4 -1 AS3333-v4-policy AS3 no ip prefix-list AS3333-v4-pol ip prefix-list AS3333-v4-policy ip prefix-list AS3333-v4-policy

\$ bgpq4 -6 -1 AS3333-v6-policy AS3333 no ipv6 prefix-list AS3333-v4-policy ipv6 prefix-list AS3333-v4-policy permit 2001:610:240::/42 ipv6 prefix-list AS3333-v4-policy permit 2001:67c:2e8::/48 ipv6 prefix-list AS3333-v4-policy permit 2a13:27c0::/29 ipv6 prefix-list AS3333-v4-policy permit 2a13:27c0:10::/44

y permit 193.0.0.0/21	t
<pre>y permit 193.0.12.0/23 y permit 193.0.18.0/23 y permit 193.0.20.0/23 y permit 193.0.22.0/23 y permit 193.0.22.0/23</pre>	

DEMO: Generating BGP filter with bgpq4

\$ bgpq4 -6 -Kl AS3333-v6-policy AS3333 /routing filter add action=accept chain="AS3333-v6-policy-V6" prefix=2a13:27c0:10::/44

\$ bgpq4 -6 -Bl AS3333-v6-policy AS3333 AS3333-v6-policy="prefix { 2001:610:240::/42 2001:67c:2e8::/48 2a13:27c0::/29 2a13:27c0:10::/44 } " OpenBSD

MikroTik

prefix=2001:610:240::/42 prefix=2001:67c:2e8::/48 prefix=2a13:27c0::/29

IRR filters are good only if the IRR entries are correct!

RPKI complements routing security efforts!

- Public key infrastructure for Internet number resources
 - Attaches digital certificate to IP addresses and AS numbers
- Hierarchy with
 - 5 RIR trust anchors
 - 2 ASO trust anchors from APNIC and LACNIC

RPKI complements routing security efforts!

- Signed objects with different payloads
 - ROA with VRP (used for ROV)
 - ASPA with VAP (in development)
- Currently only ROAs are of practical use

How does RPKI enable routing security?

SIGNING

Create ROAs for your prefixes in the RPKI system

VALIDATION

Verify the information provided by others

Create ROAs for your prefixes in the RPKI system

┿

	RIPE NCC	RPKI Dashbo	ard		3 CERTIFIED RESOURCES
°₹ ⊌	2 BGP Ann 2 Valid	O Invalid	nown	🔁 2 RO/ 🖾 2 ок	AS O Causing problems
в	GP Announcements	Route Origin Authorisati	ons (ROAs) History		Search.
t	Create ROAs for selec	ted BGP Announcements			🖾 Valid 🔺 Inv
	Origin AS	Prefix	Current Statu	S	
	AS2121	193.0.24.0/21	VALID		
	AS2121	2001:67c:64::/48	VALID		
Sh	now 25 🗸				

VALIDATION

Verify the information provided by others

Create ROAs for your prefixes in the RPKI system

╋

VALIDATION

Verify the information provided by others

RPKI Validators

Routinator

- Built by NLNetlabs
- **OctoRPKI**
 - Cloudflare's relying party software

Links for RPKI Validators

https://github.com/NLnetLabs/routinator.git

https://github.com/cloudflare/cfrpki#octorpki

For more info... https://rpki.readthedocs.io

FORT

Open source RPKI validator -

rpki-client

Integrated in OpenBsd

https://github.com/NICMx/FORT-validator/

https://www.rpki-client.org/

RPKI has two flavours: Hosted and Delegated RPKI

Hosted RPKI

- ROAs are created and published using the RIR's member portal
- RIR hosts CA and signs all ROAs
- Automated signing and key rollovers
- Allows LIRs focus on creating and publishing ROAs

Delegated RPKI

- LIR manages full RPKI system
 - Runs its own CA, manages keys/key rollovers
 - Creates, signs and publishes ROAs

- Certificate Authority (CA) Software
 - **Krill** (NLnet Labs)
 - **rpkid** (Dragon Research Labs)

RIPE NCC Hosted System

Publication as a Service

- aka "Publication in parent" or "Hybrid RPKI"
- In-between hosted and delegated RPKI
 - LIR maintains key-pairs and ROAs
 - RIR publishes your ROAs in its repository

Supported by APNIC, ARIN and RIPE NCC

NEW. **RIPE NCC Hosted Syst RIPE NCC**

ROA ROA

ROA

LIR

ROA

RIPE NCC PaaS Repository

t	:e	n	Π

RPKI & BGP Route Origin Validation (ROV)

- RPKI based route filtering, RFC 6811
- BGP announcements are compared against the **valid** ROAs
 - origin ASN and max-length must match!
- Router validates the origin of received routes: Valid, Invalid and Not Found

BGP Update

2001:db8::/32, AS65536

RFC 6811 - "BGP Prefix Origin Validation"

ROA			
Prefix	2001:db8::/32		
Max Length	/32		
Origin AS	AS65536		

After Validating ...

• You have to make a decision : "Accept" or "Discard"

Accept the prefix

Discard the prefix

Accept the prefix

After Validating ...

• You have to make a decision : "Accept" or "Discard"

Accept the prefix

Discard the prefix

Accept the prefix

Do not consider dropping prefixes with "NotFound" RPKI validation state!

Discarding BGP Invalids

- Major networks are dropping invalid BGP prefixes!
 - Telia, AT&T, Cloudflare, Netflix, Swisscom, Cogent, ...
- April 2021, RIPE NCC (AS3333) started dropping invalids too!
 - only networks with RPKI Valid or Unknown announcements are allowed
 - K-Root (AS25152) is not part of AS3333

Prefix belongs to AS103

Demo Setup

- Validators : FORT and Routinator
 - Both are installed, preconfigured and running!
- ROV will be configured on AS101 router
- AS102 announces the following prefixes:
 - its own prefix (**193.0.25.0/24**)
 - AS103 prefix (193.0.26.0/24)
 - a prefix without a ROA (20.20.20.0/24)

https://rpki.readthedocs.io/en/latest/ops/tools.html#relying-party-software

Step-1: Set up validator connection

On AS101 router

(config)# conf t (config)# router bgp 101

RPKI Router Configurations...

https://www.ripe.net/manage-ips-and-asns/resource-management/rpki/router-configuration

Step-2: Verify Validator connection and VRPs

U1_Router#show ip bgp rpki servers | i ESTAB

Connection state is ESTAB, I/O status: 1, unread input bytes: 0 Connection state is ESTAB, I/O status: 1, unread input bytes: 0

U1_Router#sho ip bgp rpki table 1547 BGP sovc network entries using 247 3851 BGP sovc record entries using 1232 Network Maxlen Origin-AS 5.32.168.0/21 21 15836 5.32.168.0/21 21 15836 5.35.224.0/19 24 8972 5.35.224.0/19 24 8972 5.35.224.0/19 24 29066 5.35.224.0/19 24 29066

7520 bytes	s of memory
232 bytes	of memory
Source	Neighbor FORT
0 0	100.64.1.1/323 100.64.1.1/3323
0 0	100.64.1.1/323
0 0	100.64.1.1/323 100.64.1.1/3323

Step-3: Check validation result

U1_Router#show ip bgp 193.0.25.0/24 BGP routing table entry for 193.0.25.0/24, version 1598443 Paths: (1 available, best #1, table default) Not advertised to any peer Refresh Epoch 1 99 102 192.168.1.2 from 192.168.1.254 (99.0.0.1) Origin IGP, metric 0, localpref 100, valid, external, best path 7FD8EAB30678 RPKI State valid rx pathid: 0, tx pathid: 0x0

ROA			
Prefix	193.0.25.0/24		
Max Length	/24		
Origin AS	AS102		

AS101	
	0

Step-3: Check validation result Prefix belongs to AS103!

U1_Router#show ip bgp 193.0.26.0/24 BGP routing table entry for 193.0.26.0/24, version 0 Paths: (1 available, no best path) Not advertised to any peer Refresh Epoch 1 99 102 192.168.1.2 from 192.168.1.254 (99.0.0.1) Origin IGP, metric 0, localpref 100, valid, external path 7FD8EAB30708 RPKI State invalid rx pathid: 0, tx pathid: 0

ROA			
Prefix	193.0.26.0/24		
Max Length	/24		
Origin AS	AS103		

AS101	
	0

Step-3: Check validation result

U1_Router#show ip bgp 20.20.20.0/24 BGP routing table entry for 20.20.0/24, version 1598444 Paths: (1 available, best #1, table default) Not advertised to any peer Refresh Epoch 1 99 102 192.168.1.2 from 192.168.1.254 (99.0.0.1) Origin IGP, metric 0, localpref 100, valid, external, best path 7FD8EAB305E8 RPKI State not found rx pathid: 0, tx pathid: 0x0

No ROA exits for this prefix!

AS101	
	0

Step-4: Discard Invalids

On AS101 router

(config-router)# route-map rpki-reject deny 10 (route-map)# match rpki invalid (route-map)# route-map rpki-reject permit 20

Conclusion

- Have proper filters in place!
 - IRR based filters particularly for customer routes
- Protect your prefixes with ROAs
- ROV prevents large fraction of hijacks and route leaks
- Deploying RPKI is not that difficult and brings big benefits
- Go for it if you haven't yet!

Questions

