

RcodeZero DNS

Operational insights

2024-05 · Christian Schöpp

Christian Schöpp

- PO RcodeZero DNS
- @nic.at

nic.at – Registry for .at

9m Inhabitants 1.5m .at domains 70 employees 0 Based in Salzburg and Vienna (capital) www.nic.at

Agenda

- 1. What we do
- 2. Why we do it
- 3. How we do it and
- 4. What are the challenges
- 5. Recommendations

What we do

Authoritative DNS

- DNS Anycast Service
 - -For us and other TLDs
 - -For registrars, ISPs and corporations

• Anycast: Global fleet of nodes available under the same (set of) ipadresse(s).

Why we do it

- Diversification
 - -You (as a business) should not rely on just one product.
- Resiliency/redundancy
 - -You (with responsibility to a service) should not rely on just one provider.
- Latency
 - -You want similar experience around the globe.

How we do it

- Basics
- Overview
- Nodes

Basics

- 1. We receive zones and content (data) from our customers
- 2. We distribute them around the globe
- 3. We (constantly) keep them in sync
- 4. We answer upon queries
- 5. We log queries (statistics)

Overview (simplyfied)

Authoritative Server

Architecture (TLD vs. Secondary)

	TLD (e.gfi)	Secondary (e.g. nog.fi)
Fleet/clouds	1	2
Nodes	35	52
Number of AS	1	2
Anycast IP's	1	2
Client 2 RcodeZero	XFR	Webinterface, REST, XFR
Zones per Client	Few	Up to millions
Delegations per Zone	Up to millions	Few

Where to place a node?

- Nodes by population
- Nodes by customers
- Nodes by traffic
- Nodes by speed
- Nodes by costs
- Nodes by tactical reasons

Tampere

Tampere

- Local node
- Little traffic
- Bilateral peering is necessary
 - -Big players are often not on route server
- Mostly beneficial for the country it is placed at
 - -Low latency
 - -Less DDoS attacks

What are the challenges

- KPI's
- Measurement
- Routing
- Attacks

Key Performance Indicators

- 1. Performance (ms)
 - -Routing issues
- 2. Uptime (%)
 - -Attacks
- 3. Propagation delay
 - -Architecture
 - -Global connectivity issues

Performance

Strategies

- 1. Nodes everywhere
- 2. Smart node placement and optimized routing
- 3. Don't care

Performance

Uptime

DNS has built in redundancy

- nog.fi lists 5 authoritative nameservers (dig nog.fi NS)
- Resolvers apply their own strategy
 - -Test them regularly
 - -Rank them
 - Speed
 - Reliability
 - Distribute DNS queries (somehow)

Uptime

- Routing issue at upstream provider
 - -Black hole every three months
 - -Queries or answers get lost
- Multi vendor strategy (TLD)
- 2 independent clouds (2nd level)
 - Different routing policy
 - Different transit providers
 - -Different node

Uptime

Measurement

• "Wer viel misst, misst viel Mist."

• If you measure a lot, you measure a lot of nonsense.

 Measurement is influenced by the point of view.

Measurement

- DNS = mostly UDP, sometimes TCP
- UDP might get lost

- UDP ≠ ICMP
- route A ≠ route B

• We have outsourced measurement

Routing challenges

- We want traffic as local as possible
 - -For low latency
 - -To allow load balancing
 - Prerequisite to scale

Bad optimization

Good optimization

Routing challenges

- Heavy traffic engineering
 - -Announce or not to announce to transits/peers?
 - -Path prepending
 - -Use of upstream BGP communities
 - -Asymetric routing (local nodes/exchanges)
- Individual peerings do not scale
 - -We love open peerings via route servers
- Never ending story (globally seen)

Why do you prepend?

Example of unoptimized BGP

Example of unoptimized BGP

New York: AS-Path length=2: 30971 1921 Tampere: AS-Path length=1: 1921

Example of unoptimized BGP

New York: AS-Path length=2: 30971 1921 Tampere: AS-Path length=1: 1921

Example of OPTIMIZED BGP

Example of OPTIMIZED BGP

New York: AS-Path length=2: 30971 1921 Tampere: AS-Path length=2: 1921 1921

Example of OPTIMIZED BGP

New York: AS-Path length=2: 30971 1921 Tampere: AS-Path length=2: 1921 1921

Prepending is needed

- To control traffic
 - -by making the shortest AS path as long as the longest
 - on all our anycast locations
 - to peers
 - global transit providers
- To consider special routing situations
 - DDoS mitigation provider is activated
 - Traffic should be routed via DDoS mitigation provider, not directly to us
 - Extend AS path even one more time
- So we ended up having an AS path length of 5 towards IX/Peers and Tier1 transit providers.

Routing challenge (real life)

An incumbent is the local key player.
At home they peer with nobody - they want to sell transit.

- Somewhere else they are a small players and (needs to) peer with everybody.
- -> Traffic is going round the world instead of going to a node close by.

Exchange or Provider

- Exchange
 - -Full control over peerings / routing
 - -Only if invited
- Provider
 - -Colocation/Server/VM included
 - Peerings included
 - -Transit included
 - -Traffic shaping trough BGP communities
 - Therefore not every provider suitable

Common attacks (authoritative DNS)

- Volumetric
- Application layer

Volumetric Attack

- Garbage to fill up links or nodes
- Outsourced
 - -Automatic detection per node
 - -Our prefix announced by the provider
 - -Scrubbed and anycasted back to "nearest" node
 - -Very little impact on latency and load distribution

Application Layer Attacks

- DNS queries (try to) overload our service
 - -Real attacks
 - Configuration mistakes
 - -Research/Security/Penetration tests

Application Layer Attacks

- Query (random) 2nd or 3rd level domain
 - -nslookup 123xyz.nog.fi, abc789.nog.fi...
 - NXDOMAIN
 - -"I know that it does not exist"
- Query name server (more or less) directly
 - -nslookup abc.bca ns.nog.fi
 - REFUSED
 - "You have come to the wrong place"

Application Layer Attacks

- Sunny day vs. rainy day
 - -Factor 100 1000
- Size matters
 - -More nodes are better
 - -Stronger nodes are better
 - -But not all nodes get equal amount of traffic

Attacks (per domain)

Attacks (per node)

Example Node

Attacks

• Which one is closer to the source?

Moscow

London

Attacks

Attacks

- Most attack traffic comes via public DNS providers
 - -Hard/impossible to block
- Target is either you or your customer
- Source of the attack ≠ attacker
- REFUSED are usually configuration mistakes
- NXDOMAIN are usually attacks

Fun facts

- Most zones are never queried.
- Most queries are for zones that do not exist.

Recommendation

- Usually, customers come to us because of
 - -bad architecture
 - -being too small
 - -or both

DO NOT

LOG OR INSPECT

DNS TRAFFIC

(PORT 53)

Internal Services

Recommendation

- Stateless Firewall
- Zones should be always available from the inside
 - (Hidden Master, forward/slaving, splitDNS)
- Redundancy
 - -with volumetric DDoS protection
 - -flat rate for queries and traffic

RcodeZero DNS

christian.schoepp@nic.at

