
Antti Ristimäki, nog.fi meeting 2025.06

Tampere

Peering automations using PDB

Agenda

• An example how to automate (public) peering configs using PeeringDB as a source of

truth

Why?

• Issues with manual peering configuration

• Inconsistent configurations, naming conventions etc.

• Obsolete peer descriptions (networks changing their names etc.)

• Arbitrary and/or obsolete prefix-limits

• Disconnected peers still lurking in the configs

• Automation is usually applied to bulk stuff → peerings are just that

• Design once, use repeatedly

Elisa peering automation

• AS6667 public (IX) peerings migrated to PeeringDB based automated configs

during 2024

• Ansible Jinja2 template, feeded with data from PeeringDB

• The Ansible playbook is not (yet) ran automatically, but instead triggered by an

operator

• Automatic GHA based config file background rendering, though

• Some plans to deploy fully automated config push to the network

Introducing an IX

an internal blob for IX identification

list of routers connected to the IX

a pointer to the IX PeeringDB entry

list (of dicts) of peer ASNs

Peer MD5 definitions

peers:

 - { asn: xxxx, md5: 9foobar }

 - { asn: yyyy, ipv4_md5: 9foobar, ipv6_md5: 9barfoo }

Non-selective peering with everybody

• A keyword ‘all’ can be given in the peer list, in which case all the peers that have defined

their presence in the given IX in PeeringDB will be configured for the given IX

Relevant PeeringDB objects

• net object represents a network

• ix object represents an Internet Exchange

• ixlan object represents an IX peering LAN

• it seems that ixlan_id == ix_id, but I’m not sure if this is always the case(?)

• netixlan object is a logical link between a network and the IX lan

• one could say that a network is connected to an IX fabric via an netixlan object

PeeringDB objects relationships

PeeringDB related Ansible tasks

• For each router to be configured, two PeeringDB API queries are initiated

• Only netixlan and net objects currently needed to render the config in our excercise

• As much information packed into single queries as possible (“ixlan_id__in” and “asn__in”) to avoid

throttling

Get all netixlan objects from all IXes that

the given router is connected to

For all the retrieved netixlan objects, get

the respective net objects

Rendered configuration
protocols {

 bgp {

 replace:
 /* configured by Ansible, please do not edit manually */
 group ficix1_ipv4 {

 description "FICIX 1 (Espoo)";
 type external;
 local-address 193.110.226.19;
 remove-private;
 import [our import policy chain];

 export [our export policy chain];
 neighbor 193.110.226.14 {
 description "PEER - FICIX 1 (Espoo) ; CSC/Funet";
 family inet {
 unicast {

 prefix-limit {
 maximum 100;
 teardown {
 90;
 idle-timeout 60;

 }
 }
 }
 }
 authentication-key "9XXXXXXXXXXXX";
 peer-as 1741;
 }
 neighbor 193.110.226.xx {

About PeeringDB prefix-limits

• It is expected that the prefix count in PeeringDB

represents the suggested max-prefixes setting

• IMHO the order of magnitude is more relevant that the exact number of

advertised prefixes

• In our template a PeeringDB-found value <10 is always

rounded to a value of 10 and a hard-coded default value

of 1000 is used if no value in PeeringDB

{% if peer_dict.info_prefixes4 is defined and peer_dict.info_prefixes4 > 0 %}
maximum {{ [10, peer_dict.info_prefixes4] | max }};
{% else %}
maximum 1000;
{% endif %}

PeeringDB API throttling

• Even authenticated PeeringDB API queries are rate-limited (40 queries/min)

• Possible solutions

• keep your own local mirrored cache

• pack more stuff into a single query

• partition your workflow into smaller batches and pause in between

• In our case, the Ansible playbook is usually ran against a single router at a time, so rate-

limiting is not a big issue

• We also try to pack as much information into a single query as possible

Route servers

• Excluded from automation

• After all, peering with route servers could be considered an alternative

to bilateral peering

• Exclusively peering with route servers → no need to automate bilateral peerings

• Bilateral peerings automated → less incentives to peer with route servers

Future work

• (At least semi-)Automate messaging with peers

• Better management of MD5 (and/or TCP-AO) secrets

• Somehow better manage configured yet non-established sessions

• Include IRR based prefix filtering

Thank you. Questions?

	Slide 1: Peering automations using PDB
	Slide 2: Agenda
	Slide 3: Why?
	Slide 4: Elisa peering automation
	Slide 5: Introducing an IX
	Slide 6: Peer MD5 definitions
	Slide 7: Non-selective peering with everybody
	Slide 8: Relevant PeeringDB objects
	Slide 9: PeeringDB objects relationships
	Slide 10: PeeringDB related Ansible tasks
	Slide 11: Rendered configuration
	Slide 12: About PeeringDB prefix-limits
	Slide 13: PeeringDB API throttling
	Slide 14: Route servers
	Slide 15: Future work
	Slide 16: Thank you. Questions?

