
➜ nog.fi git:(main)

Generating 1 Tbps of traffic

on a commodity hardware using T-Rex

nog.fi meeting 25.06 // Generating 1 Tbps of traffic // github.com/Civil

➜ nog.fi git:(intro)

Vlad and how got into this

[>] 15+ years of experience as SysAdmin/SRE/DevOps

[>] side project close to hardware

[>] little to no experience with networking

[>] like to tinker with exotic hardware as a hobby

[>] Switzerland / 25 Gbps internet at home / gear was the bottleneck

[>] talked to Pim Van Pelt about Network performance testing

[>] 1 Tbps router on CPU required load generator

➜ nog.fi git:(intro)

TLDR;

«I was so preoccupied with whether I could,

I didn't stop to think if I should»

➜ nog.fi git:(part 1: Hardware)

What you need to generate 1 Tbps?

[>] PCIe bandwidth:

[-->] PCIe Gen3: ~120 Gbps per x16 slot -> 1x100G NIC

[-->] PCIe Gen4: ~250 Gbps per x16 slot -> 2x100G NIC

[-->] PCIe Gen5: ~500 Gbps per x16 slot -> 2x200G NIC

➜ nog.fi git:(part 1: Hardware)

What you need to generate 1 Tbps?

[>] PCIe bandwidth

[>] PCIe lanes CPU/MB:

[-->] Desktop platforms:

[------>] only 28 PCIe Gen5 lanes, less than 600Gbps of total bandwidth (in theory)

[-->] Server platforms (per CPU):

[------>] 80 PCIe Gen5 for Xeon Sapphire Rapids / Emerald Rapids

[------>] 112 PCIe Gen5 for Xeon-W Sapphire Rapids

[------>] 96 PCIe Gen5 for Epyc 8004

[------>] 128 PCIe Gen5 for Epyc 9004/9005

➜ nog.fi git:(part 1: Hardware)

What you need to generate 1 Tbps?

[>] PCIe bandwidth

[>] PCIe lanes CPU/MB

[>] money:

[-->] No sponsorship

[-->] Hardware must be as cheap as possible

➜ nog.fi git:(part 1: Hardware)

What you need to generate 1 Tbps?

[>] PCIe bandwidth

[>] PCIe lanes CPU/MB

[>] money

[>] usable for VPP for next part of the project: 

[-->] Intel supports DDIO since Xeon-E5v2

[-->] AMD supports SDCI since Zen 5 (not available yet as of the start of the project)

➜ nog.fi git:(part 1: Hardware)

What you need to generate 1 Tbps?

[>] PCIe bandwidth

[>] PCIe lanes CPU/MB

[>] money

[>] usable for VPP for next part of the project

[>] use small packets, ideally 64b

➜ nog.fi git:(part 1: Hardware)

Idea: Xeon-W Sapphire Rapids

[>] Start low-end:

[-->] Xeon W5-3435X, 16 cores, 32 threads

[>] Because of the platform:

[-->] 6 x16 PCIe Gen5 slots, 1x8 PCIe Gen5

With Gen4 NICs that is 1.3 Tbps of theoretical performance

* — depending on generation and exact model 
** — information about latest generation of HW was not available

➜ nog.fi git:(part 1: Hardware)

First problems: not all NICs are equal

[>] Claimed performance:

[-->] Mellanox ConnectX 148–268 Mpps*

[-->] Intel NICs 112–228 Mpps*

[-->] Broadcom NICs 106 Mpps**

[>] Availability & price on a used market varies

➜ nog.fi git:(part 1: Hardware)

NICs. Conclusion

[>] Start with mix of ConnectX-5, 6 and 7s

[>] Start simple, with loopback tests per NIC

[>] Investigate performance of cheap Bluefield-2 (MBF345A-VENOT)

[>] Investigate how HyperThreading affects performance

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «up to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Problem 1: сollecting data

[>] T-rex's TUI is nice, but doesn't scale and
requires QoL patches

[>] Stateless GUI is heavy

[>] trex-loadtest-viz — nice, but not real-time

: write my own simplistic prometheus
exporter

Solution

https://trex-tgn.cisco.com/
https://github.com/Civil/trex-core
https://github.com/cisco-system-traffic-generator/trex-stateless-gui
https://github.com/wejn/trex-loadtest-viz
https://github.com/Civil/ciscotrex_exporter
https://github.com/Civil/ciscotrex_exporter

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Writing prometheus exporter

T-Rex have some documentation, but not all that's required:

[>] Documentation is not complete (no information what is returned)

[>] get_stats API requires write access, while TUI works in read-only mode

[>] TUI is large and do a lot of stuff

: read carefully what TUI do and experiment. Iterate quickly and early.

Solution

https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/index.html

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Visualizing in Grafana

[>] Took few hours to write a PoC

[>] TUI uses non-documented API
or direct field access to do some 
of the work

[>] Have rough edges — requires
restart to reconnect to T-Rex

Code of exporter is on GitHub

https://trex-tgn.cisco.com/
https://github.com/Civil/ciscotrex_exporter

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

listic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Heavily based on Pim's talk @ FOSDEM 2024 and Talk about Scapy @ FOSDEM 2024

➜ nog.fi git:(part 2: Tests & Software)

Problem 2

Example bench.py generator is  
not fast — no caching

: implement your own

Solution

https://trex-tgn.cisco.com/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1919-vpp-100mpps-of-mpls-on-a-linux-pc/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-2812-testing-iptables-firewall-rules-with-scapy/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

listic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Available on Github

➜ nog.fi git:(part 2: Tests & Software)

Problem 2

T-Rex allows to write your own generator. It's simpler than it looks [examples 1, 2].

All the logic — 18 lines of code

Features:

[>] Cache the packets

[>] Uses just UDP

[>] Tries to randomise IP and Port

https://trex-tgn.cisco.com/
https://github.com/Civil/simple_bench/blob/main/profiles/simple.py#L13-L60
https://github.com/cisco-system-traffic-generator/trex-core/blob/master/scripts/automation/trex_control_plane/interactive/trex/examples/stl/stl_imix_bidir.py
https://github.com/cisco-system-traffic-generator/trex-core/blob/master/scripts/automation/trex_control_plane/interactive/trex/examples/stl/stl_run_udp_simple.py

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

ConnectX-5 & 6

Specs of those cards are the same: 2x100G, PCIe Gen4.

They should perform , right? —

[>] NIC vendors doesn't explain well the difference between NICs

[>] With ConnectX you always can send more than receive

the same Nope!

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

ConnectX-5 & 6

[>] Per port performance:

[-->] CX5 capped at ~132 Mpps

[-->] CX6 capped at ~180 Mpps

[>] Until approx. 5 cores per NIC,

there is no significant difference

[>] Prioritize CX6 over CX5

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

ConnectX-7 & BF2

Note: BF2 is 1x200

[>] ConnectX-7 per-slot is better

[>] Price-wise BF2 is unbeatable

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Conclusion

Ideally get CX7s, if they are cheap.

If not — BF2 and CX6 are second
best.

CX5 is not worth it unless very
cheap.

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 2: Tests & Software)

Performance scaling

When CPU util close to 100% — there is huge difference between target vs observed pps:

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 3:)

Hyperthreading

Have 16 cores / ideally need 30 or even more / have 32 threads

Why not to ?
test HT

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 3: Hyperthreading)

Conclusion

HT on Sapphire Rapids is  
about 0.4 of a normal core.

Less predictable performance
overall.

It is better than nothing and  
not so harmful as people think.

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 4: Testing generation capability)

Setup:

[>] Xeon W5-3435X

[>] 2xConnectX-7

[>] 4xConnectX-6

[>] 5 threads per NIC

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?
Attempt 1
➜ nog.fi git:(part 4: Testing generation capability)

128b packets,  
just slightly above 600 Gbps L2.  

Doesn't scale beyond that.

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Attempt 1

Recompile T-Rex with Intel's OneAPI Compiler, tuning BIOS, overclocking CPU.  

256b packets, manual core assignments — highest result is 850 Gpbs L2.

➜ nog.fi git:(part 4: Testing generation capability)

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 4: Testing generation capability)

Attempt 1. Analysis

[>] Single card works fine in this machine.

[>] When you add traffic — performance drastically drops.

[>] Performance drops on a NIC that doesn't share cores or threads.

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 4: Testing generation capability)

Attempt 1. Analysis

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Attempt 1. Analysis

[>] Potential culprit: Sub-NUMA clustering.

[>] Modern server CPUs are non-uniform.

[>] W5-3435 consists of 4 clusters, 4 cores each.

[>] Communication between clusters is not ideal, when all PCIe Root Complexes are used.

➜ nog.fi git:(part 4: Testing generation capability)

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 4: Testing generation capability)

Attempt 2

Add second machine. Same Xeon W5-3435X, swap all NICs for BF2s 1x200G

Results with 64b packets

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 4: Testing generation capability)

Results

[>] 128b packets — 1.06Gpps & 1Tbps

[>] Required 2 machines

[>] Could replace with 1 machine,

but with 2x cores

[>] Power consumption:

870W and 630W

[>] Slight difference —

different settings

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 5:)

Conclusions

[>] You can build a load generator on a relatively tight budget:

W5-3435X + MB + RAM costed ~3.5k EUR

[>] It is possible to get one relatively small machine to do ~0.8 Tbps,

4x T-Rex claims one machine can.

[>] You should allocate 1 real core per each 35 Mpps you generate

[>] HyperThreading helps, but not as much, adds ~10 Mpps.

[>] Vendor's compiler might help when you really need that extra 5–10% speed

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(part 5:)

Plans for the future

[>] Investigate cross-effects of different NICs and Sub-NUMA

[>] Bluefield-2 have an ARM CPU, might be able to do 100G from just the standalone NIC

[>] Do more extensive tests & report for the VPP (see Pim's talk at DENOG16)

[>] Test AMD Epyc machine as a load generator

[>] Try to fit load generation into single one machine

https://trex-tgn.cisco.com/
https://www.youtube.com/watch?v=ptm9h-Lf0gg

➜ nog.fi git:(questions)

Thank you for your time.

nog.fi meeting 25.06 // Generating 1 Tbps of traffic // github.com/Civil

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(outro)

Contacts

[>] linkedin: vladsmirnov

[>] github: Civil

[>] email: civil.over@gmail.com

[>] discord/telegram: @Civiloid

https://trex-tgn.cisco.com/
https://www.linkedin.com/in/vladsmirnov/
https://github.com/Civil
mailto:civil.over@gmail.com

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(bonus)

Power consumption

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(bonus)

Power consumption

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

[>] Realistic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

➜ nog.fi git:(bonus: Full test results, Attempt 1)

https://trex-tgn.cisco.com/

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

listic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Available on Github

➜ nog.fi git:(bonus: Tests & Software)

Problem 2

https://trex-tgn.cisco.com/
https://github.com/Civil/simple_bench/blob/main/profiles/simple.py#L13-L60

➜ nog.fi git:(Part 2: Tests & Software)

Use T-Rex — what is it?

listic traffic generator

[>] Uses DPDK under the hood

[>] Fast — claims «гp to 200 Gb/sec with one server»

[>] Uses ScaPy to generate payload

Available on Github

➜ nog.fi git:(bonus: Tests & Software)

Problem 2

https://trex-tgn.cisco.com/
https://github.com/Civil/simple_bench/blob/main/profiles/simple.py#L13-L60

