

The IPv4 Challenge & a Modern Solution

Enabling IPv4 Services in an IPv6-only World with RFC 8950

- The Problem: An IPv4-Constrained World
 - IPv4 Address Exhaustion: We've run out of public IPv4 addresses. This is a critical issue for ISPs and enterprises trying to scale and connect new customers.
 - The Transition to IPv6 is Essential: IPv6 offers a massive address space, but the world isn't fully IPv6-native yet. Many legacy services, websites, and clients still require IPv4.
- 2. The Old Solutions: Complex & Costly
 - Dual-Stack: Running both IPv4 and IPv6 on every router and every link. This is operationally complex, doubles the management overhead, and consumes router resources.
 - Complex Tunneling & NAT: Solutions like NAT444 or DS-Lite create multiple layers of complexity, introduce latency, and are difficult to troubleshoot.

The IPv4 Challenge & a Modern Solution

- The Modern Solution: RFC 8950
 - A Simple Idea: Use your high-speed, scalable IPv6 core network as the transport for your IPv4 traffic.
 - How it Works: BGP is used to advertise IPv4 routes, but the next-hop address is an IPv6 address. This allows IPv4 packets to traverse your IPv6-only core without any complex tunneling.
 - Key Benefits:
 - Operational Simplicity: Run a single, clean IPv6-only core. No more dual-stack complexity.
 - Reduced Overhead: Less protocol management, fewer configurations.
 - Scalability: Future-proof your network by moving towards a pure IPv6 environment while still serving IPv4 customers.

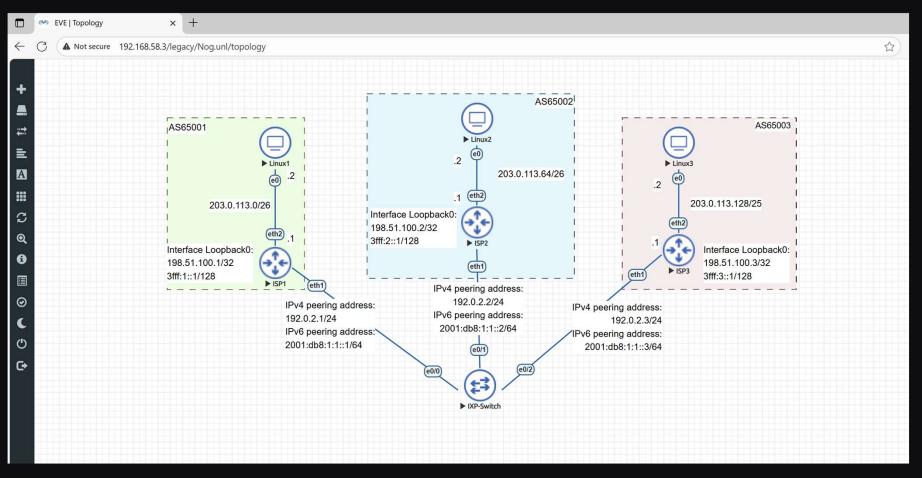
The Magic behind RFC8950

- 1. The Core Concept: MP-BGP in Action
 - RFC 8950 isn't a new protocol; it's a new way to use an existing one: Multiprotocol BGP (MP-BGP).
 - MP-BGP allows BGP to carry routing information for protocols other than IPv4, such as IPv6 or even VPN routes.
 - RFC 8950 specifically defines how to advertise IPv4 routing information using an IPv6 next-hop.

The Magic behind RFC8950


2. How it Changes BGP

- Standard BGP: When an IPv4 prefix (10.0.0.0/24) is advertised, the BGP next-hop must be an IPv4 address. This requires a full dual-stack network.
- With RFC 8950: The router advertises the same IPv4 prefix, but the next-hop is a **global IPv6 address**. The IPv4 traffic is then encapsulated and transported over the IPv6-only core network.


The Magic behind RFC8950

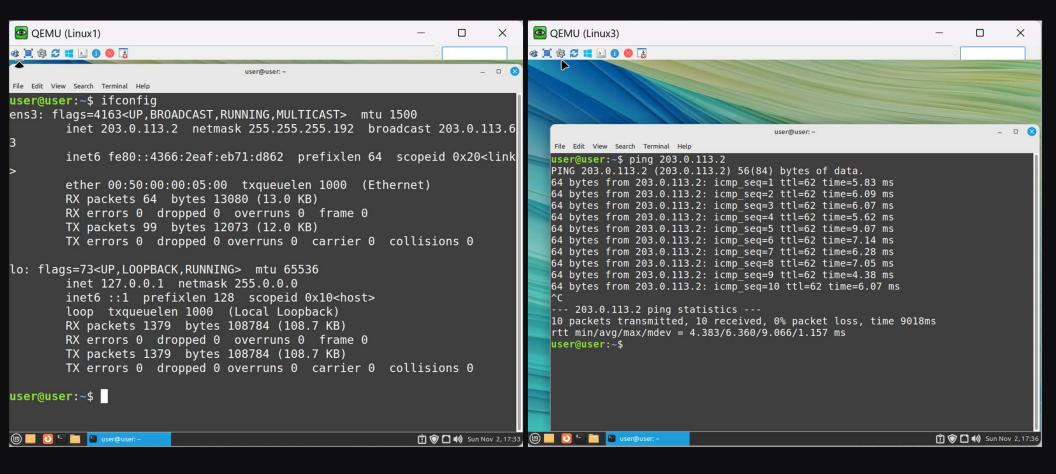
- 3. The Formal Name
 - RFC 8950: Advertising IPv4 Network Layer Reachability Information (NLRI) with an IPv6 Next Hop.

The IXP and ISP Lab Topology

Practical Demonstration in EVE-NG

BGP configuration in MikroTik RouterOS 7.20.rc3

```
₽ ISP3
                                                                            [admin@ISP3] >
[admin@ISP3] > routing bgp export
# 2025-11-02 23:17:07 by RouterOS 7.20rc3
/routing bgp instance
add as=65003 disabled=no name=Instance1 router-id=198.51.100.3
/routing bgp connection
add comment=peer-AS65001 disabled=no instance=Instance1 local.address=\
    2001:db8:1:1::3 .role=ebgp name=bgp1 output.redistribute=connected \
    remote.address=2001:db8:1:1::1/128 .as=65001 routing-table=main
add as=65003 comment=peer-AS65002 disabled=no instance=Instance1 \
    local.address=2001:db8:1:1::3 .role=ebgp name=bgp2 output.redistribute=
    connected remote.address=2001:db8:1:1::2/128 .as=65002
[admin@ISP3] >
```


BGP session confirmation

```
₽ ISP3
[admin@ISP3] >
[admin@ISP3] > routing bgp session print
Flags: E - established
0 E name="bgp1-1" instance=Instance1
     remote.address=2001:db8:1:1::1 .as=65001 .id=198.51.100.1
     .capabilities=mp,rr,enhe,qr,as4 .afi=ip,ipv6 .messages=6 .bytes=398
     eor=""
     local.address=2001:db8:1:1::3 .as=65003 .id=198.51.100.3
     .cluster-id=198.51.100.3 .capabilities=mp,rr,qr,as4 .afi=ip,ipv6
     .messages=6 .bytes=398 .eor=""
     output.procid=21
     input.procid=21 ebgp
    hold-time=3m keepalive-time=1m uptime=25s980ms
     last-started=2025-11-02 23:25:09 last-stopped=2025-11-02 23:25:03
    prefix-count=3
1 E name="bgp2-1" instance=Instance1
     remote.address=2001:db8:1:1::2 .as=65002 .id=198.51.100.2
     .capabilities=mp,rr,enhe,gr,as4 .afi=ip,ipv6 .messages=5 .bytes=318
     .eor=""
     local.address=2001:db8:1:1::3 .as=65003 .id=198.51.100.3
     .cluster-id=198.51.100.3 .capabilities=mp,rr,qr,as4 .afi=ip,ipv6
     .messages=6 .bytes=398 .eor=""
     output.procid=20
     input.procid=20 ebgp
```

BGP next-hop validation check

```
₹ ISP3
                                                                                 [admin@ISP3] >
[admin@ISP3] > ip route print
Flags: D - DYNAMIC; A - ACTIVE; c - CONNECT, b - BGP
Columns: DST-ADDRESS, GATEWAY, ROUTING-TABLE, DISTANCE
    DST-ADDRESS
                      GATEWAY
                                        ROUTING-TABLE DISTANCE
DAc 192.0.2.0/24
                      ether1
                                                               0
D b 192.0.2.0/24
                      2001:db8:1:1::2
                                                              20
D b 192.0.2.0/24
                      2001:db8:1:1::1
                                                              20
D b 198.51.100.1/32
                      2001:db8:1:1::1
                                                              20
DAb 198.51.100.1/32
                      2001:db8:1:1::1
                                                              20
DAb 198.51.100.2/32
                      2001:db8:1:1::2
                                                              20
D b 198.51.100.2/32
                      2001:db8:1:1::2
                                                              20
DAc 198.51.100.3/32
                      Loopback0
                                                               0
D b 203.0.113.0/26
                      2001:db8:1:1::1
                                                              20
DAb 203.0.113.0/26
                      2001:db8:1:1::1
                                                              20
                      2001:db8:1:1::2
DAb 203.0.113.64/26
                                                              20
D b 203.0.113.64/26
                      2001:db8:1:1::2
                                                              20
DAc 203.0.113.128/25
                      ether2
                                                               0
[admin@ISP3] >
```

Customer's connection result

Conclusion: Why this Matters

- Scalability: Reduces dependence on IPv4 address space for the core network.
- Operational Simplicity: A single IPv6-only underlay network is easier to manage than a dual-stack one.
- Future-Proofing: Prepares the network for an IPv6-dominant future without sacrificing existing IPv4 services.