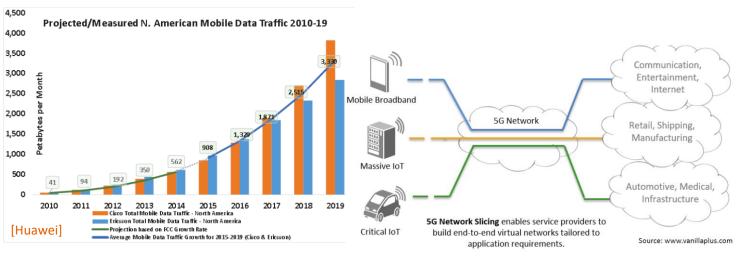
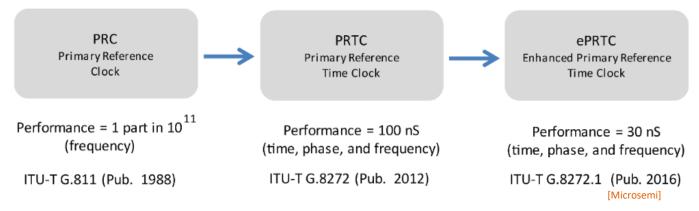
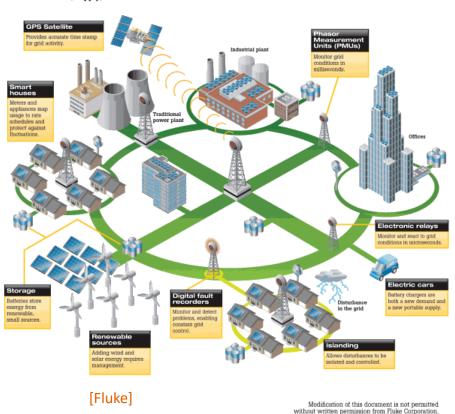


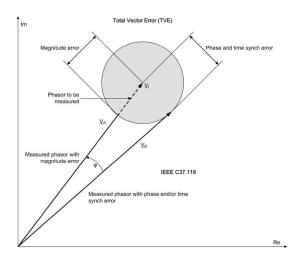
Contents


- Motivation: Where/why do we need precise time in the network
- Timekeeping: Sources for time
- Time transfer
 - White Rabbit a.k.a. PTP High Accuracy profile
 - VTT MIKES time-network
 - Results from long/short links usign 1 or 2 fibers
- Future: distributed, robust, accurate timekeeping


9 VTT – beyond the obvious

Telecom standards for synchronization




Need for synchronization in Smart Grids

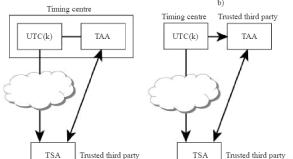
Smart Grid

A real-time, dynamic network of electrical demand, supply, and control

1% total vector error -> 1 µs requirement on timing.

16/05/2019

Synchronization in Finance / e-Commerce



Examples of implementation to the concept

a)

ITU-R TF.1876

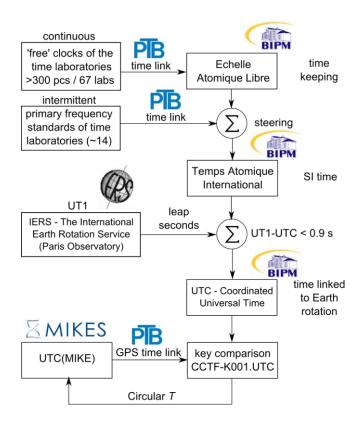
c)	d)
Timing centre	Trusted third party Timing cer
UTC(k)	TAA ← UTC(k
\downarrow	UTC(I)
TAA Trusted third party	
	
1.1.	/
↓ ↓	★ ★

Certification

* TSA: Time stamp authority

Business Clocks - What requirements will apply with MiFID II?

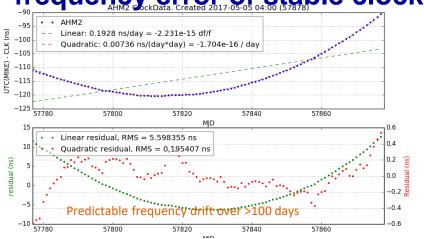
Reference time: Operators of trading venues and their members or participants shall synchronise the business clocks they use to record the and time of any reportable event with the Coordinated Universal Time (UTC)

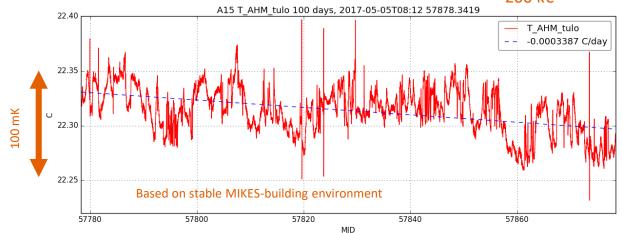

2 Level of accuracy: Applicable for operators of trading venues and their members

	Gateway-to-gateway latency ¹	Max. divergence from UTC	Granularity of timestamp
Trading venues	>= 1 ms ²	1 ms	1 ms or better
Trauling vertues	< 1 ms ²	100 µs	1 µs or better
HFTs	-	100 µs	1µs or better
Voice trading	=	1s	1s or better
RFQ	-	1s	1s or better
Negotiated Transactions	2	1s	1 s or better
Other trading activity		1 ms	1 ms or better

μs = microsecond, ms = millisecond, s = second


International Timekeeping, UTC-laboratories


Active hydrogen maser


Timekeeping is based on predictable

Active Hydrogen Maser ~200 k€

Traceability through Circular-T, published monthly by the BIPM

CIRCULAR T 357 2017 OCTOBER 10, 13h UTC ISSN 1143-1393

BUREAU INTERNATIONAL DES POIDS ET MESURES
ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE
PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 FAX. +33 1 45 34 20 21 tai@bipm.org

The contents of the sections of BIPM Circular T are fully described in the document "Explanatory supplement to BIPM Circular T" available at ftp://ftp2.bipm.org/pub/tai/publication/notes/explanatory_supplement_v0.1.pdf

1 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1, 0h UTC, TAI-UTC = 37 s.

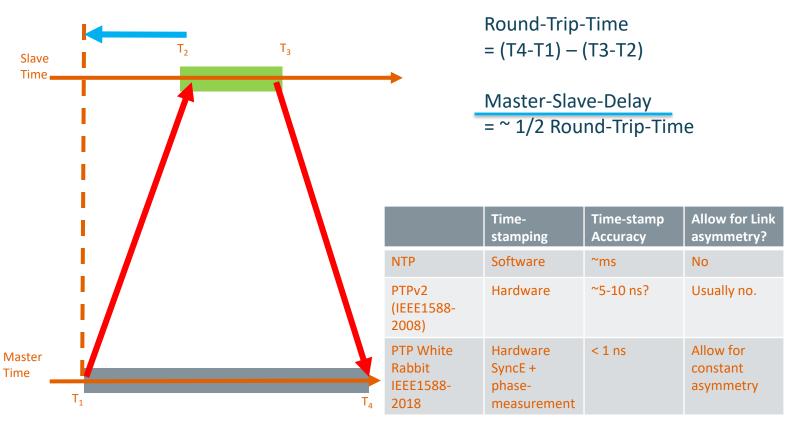
	2017 Oh UTC MJD ratory k	AUG 29 57994	SEP 3 57999	SEP 8 58004	SEP 13 58009 [UTC-UTC(k	SEP 18 58014 :)]/ns	SEP 23 58019	SEP 28 58024	Uncert uA	ainty/ uB	ns Notes u
JV	(Kjeller)	4.8	-6.2	-17.2		-17.6	-19.0	-19.6	0.4	20.0	20.0
KEBS	(Nairobi) (Serpong-Tangerang)	141.1	168.3	169.5	174.4	188.4	200.4	173.8	2.0	20.0	20.1
	(Daejeon)	35.5	40.3	44.3	47.7	50.6	52.2	52.9	0.4	11.1	11.1
KZ	(Astana)	-294.7	-322.8	-334.3	-331.1	-313.3	-298.9	-301.0	1.5	9.3	9.4
LT	(Vilnius)	158.7	144.0	145.4	157.0	152.5	168.8	181.8	2.0	11.3	11.4
MASM	(Bayanzurkh)	-411.6	-428.7	-451.6	-	_	-34.5	-60.0	0.7	20.0	20.1
MBM	(Podgorica)	51657.3	51989.6	52323.7	52643.4	52978.9	53335.9	53658.6	1.5	20.0	20.1
MIKE	(Espoo)	-0.4	-0.3	0.5	0.5	0.8	-0.2	-0.7	0.7	4.2	4.3
MKEH	(Budapest)	-65005.0	-65222.3	-65420.4	-65627.5	-65836.7	-66030.7	-66237.0	1.5	20.0	20.1
MSL	(Lower Hutt)	285.3	289.9	309.0	301.6	285.8	300.7	321.8	1.5	20.0	20.1
MTC	(Makkah)	1149.2	1164.1	1145.4	1170.6	1149.7	1204.2	1187.0	10.0	7.4	12.4
NAO	(Mizusawa)	99.4	86.1	93.0	95.8	97.0	89.5	75.7	2.0	20.0	20.1
NICT	(Tokyo)	-5.7	-5.8	-7.5	-6.9	-5.9	-4.2	-1.9	0.4	2.2	2.3
NIM	(Beijing)	5.2	4.5	3.8	3.3	3.9	3.7	2.9	0.7	1.9	2.0
NIMB	(Bucharest)	1813.1	1816.1	1803.5	1816.4	1818.9	1814.2	1808.5	0.4	7.2	7.2
NIMT	(Pathumthani)	203.3	208.9	214.5	217.7	219.5	218.6	221.5	1.0	20.0	20.1
NIS	(Cairo)	11.9	8.4	2.4	-19.9	-30.1	-48.5	-55.3	1.6	20.0	20.1
NIST	(Boulder)	0.5	0.6	1.1	1.7	2.2	2.2	1.4	0.4	4.9	4.9

Network Time Transfer Techniques

(software time-stamping, unpredictable delays in routers/switches/gateways)

PTP: microseconds (hardware time-stamping)

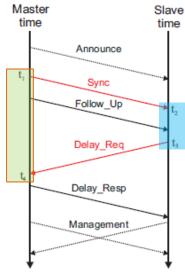
PTP = Precision Time Protocol (IEEE 1588-2008, PTPv2)


PTP White Rabbit: nanoseconds
(IEEE 1588-2018 High Accuracy profile)
(hardware time-stamping enhanced by precise phase-

Metrology & scientific clocks..... NTP in LAN TWSTFT/GNSS CV ePRTC PRTC Metrology **Telecommunication** 100fs 100 ps 10ns 100ns 10 µs 100 µs 1 ps 1 ns [Deutsche Telekom] OTT White Rabbit PRTC-B Mobile TDD

measurement

Time-transfer (principle)

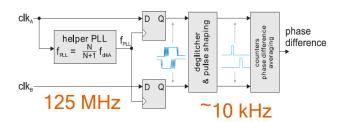


Symmetry essential for good accuracy!

1-fiber links with BiDir optics are best. 2-fiber (long) links often need calibration before use.

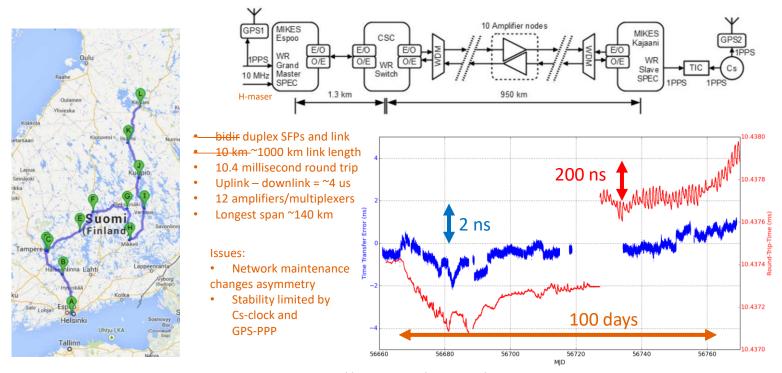
White Rabbit: Precision Time Protocol + Synchronous Ethernet

Step 1. Hardware time-stamping of t_1 - t_4 Gives coarse (8 ns) RTT


$$delay_coarse = (t_4 - t_1) - (t_3 - t_2)$$

Step 2.
Phase measurement to enhance T2

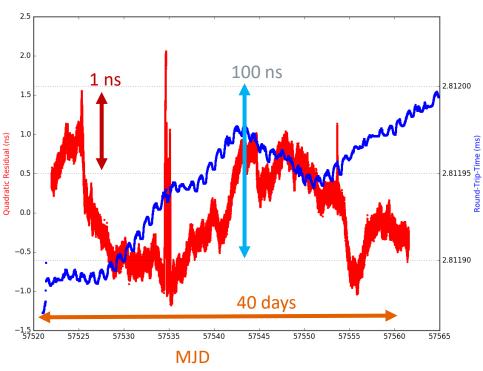
DDMTD: Measuring picoseconds with ~125 MHz clocks on FPGAs


-> Round-trip-time measurement with sub-nanosecond precision

NOTEs for PTP High Accuracy

- Point-to-Point links between WR/HA-devices
- No optical/electrical conversion on path
- No legacy switches
- Best performance in 1-fiber
- Asymmetries of ~1 us per 100-300km 2-fiber links observed

1000 km Espoo - Kajaani White Rabbit link



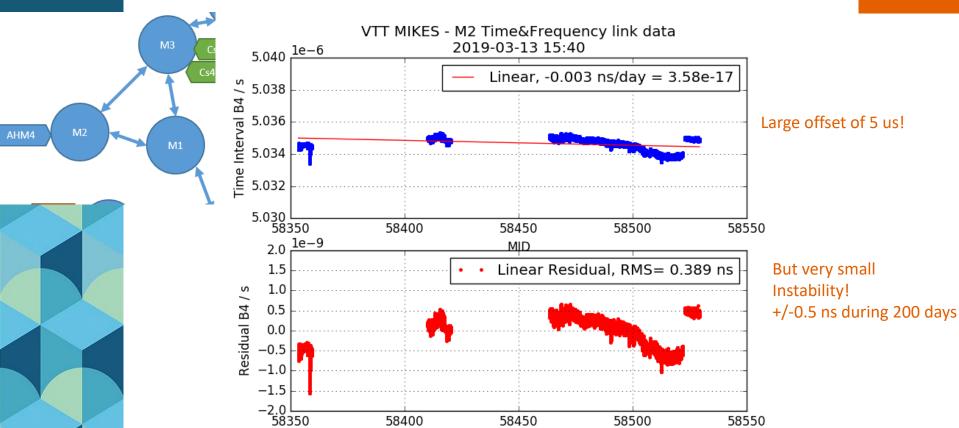
[Dierikx et al. http://dx.doi.org/10.1109/TUFFC.2016.2518122]

16/05/2019

280km Link between H-maser clocks



-> Almost like having the remote clock In the lab next door! ©


Future: Clock Network, as of 2019-04

Loop M1-M2-M3 closure error

16/05/2019 VTT – beyond the obvious 15

Conclusions & References

- ePRTC requirements approach the level of national UTC-labs!
 - GNSS is widely used but can be spoofed/jammed!?
- PTP White Rabbit / High Accuracy can be used for ePRTC-level distribution.
 works with ns stability and offsets limited by the network
- Timekeeping in the future will be distributed and redundant
- VTT MIKES operates around 1700 km of time-links, mostly for research at the moment.
 - Do we need/want a national reliable operational timekeeping-network?

References

Hajautetut vikasietoiset kelloverkot https://www.defmin.fi/files/4563/2500M-0099 Tiivistelmaraportti Wallin.pdf

GSA: Report on Time & Synchronisation User Needs and Requirements

https://www.gsc-europa.eu/system/files/galileo_documents/Time-Synchronisation-Report-on-User-Needs-and-Requirements-v1.0.pdf

White Rabbit best practices guide

https://www.ohwr.org/project/white-rabbit/wikis/Documents/wr-good-practice-guide

PTP White Rabbit on ~1000 km Otaniemi-Kajaani link https://ieeexplore.ieee.org/document/7383303

9 VTT – beyond the obvious

Thank You!

16/05/2019 VTT – beyond the obvious