
Overlay networking with

OpenStack Neutron

in Public Cloud environment
Trex Workshop 2015

About

• Presenter

• Anton Aksola (aakso@Twitter,IRCNet,Github)

• Network Architect @Nebula Oy, started in 2005

• Currently working heavily with OpenStack

• Focusing in Networking and Software Development

• Nebula Oy

• ISP, hosting and IT service company established in 1997

• Turnover in 2013 was ~26M€

• 120 employees currently

• Offering ranging from Cloud Services to Managed Services and traditional IT services

OpenStack?

In a nutshell

• Collection of software projects for providing cloud services

• Core projects allow you to run Infrastructure as a Service cloud
• Compute (Nova)

• Storage (Cinder and Swift)

• Network (Neutron)

• Identity (Keystone)

• Other projects include
• Dashboard (Horizon)

• Orchestration (Heat)

• Telemetry (Ceilometer)

• Database (Trove)

• ... and many more

Network - Neutron

• Network orchestration framework that provides essential and supporting

network services to OpenStack cloud

• Core functionality

• Network connectivity

• SDN: user defined arbitrary topologies

• Basic IPAM

• Supporting services such as DHCP, DNS, Perimeter FW, Security Groups and

VPN

• Consists of multiple plugins and drivers both commercial and open source

• Unified northbound API

Our Public Cloud journey

• We started researching for an alternative cloud platform in Autumn 2013

• Before this we’ve had offering based on commercial products

• Legacy systems also included Xen and Hyper-V based virtualization with static network

configuration

• Main targets from network point of view

• Flexible: users must be able to provision network resources on demand (segments, subnets

and interfaces)

• Fault tolerant: solution needs to be available on two distinct datacenters

• Secure: user separation must be built-in

• Scalable: must support large amount of configurations and performance must be in par

with current offering

Starting point

• We had two almost identical
datacenters with good network gear

• Ability to use AToM, VPLS and L3VPNs
over the MPLS backbone

• So pretty good base

• But:

• Legacy systems use VLANs for
customer separation

• VLAN ids are DC significant

• VLAN and VPLS/L3VPN
provisioning is static and done
by the operator with
provisioning scripts

• No existing APIs DC 1 DC 2

PE Routers

MPLS

Backbone

n*10G

Converged DC Network

Servers connected

w/ Link Bundles

PE Routers

n*10G

Converged DC Network

Servers connected

w/ Link Bundles

Networking models in Neutron

• In 2013 Neutron supported following models:

• Flat: all compute instances join to a single network. No customer isolation is possible and

no SDN features are available

• VLAN: users can create custom networks and neutron allocates segmentation ids (VLANs)

from predefined ranges

• Overlay: same model as with VLANs but an overlay protocol (GRE/VXLAN) is used to

transport customer traffic between hypervisors

• Neutron implements classic L2 network segments in all operating modes

• Other commercial public clouds have their specific solutions: Amazon has VPC and

Microsoft has Hyper-V Network Virtualization

• L3 functions are handled by L3-agents

Comparing VLAN and Overlay models

VLAN

Pros

• Pretty straight-forward solution – what we have
done for ages

• Predictable performance

• Ability for legacy servers to join to the customer
network

Cons

• Limited number of segments available (4094). Need
to coordinate with existing allocations

• QinQ cannot be used as we want true separation in
MAC level

• PBB push/pop is not supported in hypervisors so we
cannot leverage that

• Every VLAN needs to be mapped to a unique VPLS
instance for Inter-DC connectivity. PBB-VPLS is also
a possibility but we didn’t have support for it.

• Need to pre-provision all possible VLANs or
integrate with network gear

OVERLAY

Pros

• Much more segments available. In VXLAN the VNID
field is 24bits long

• Only one segment required between hypervisors for
customer traffic

• L3VPN can be utilized for Inter-DC traffic instead of
VPLS

• True separation in MAC level

• Network topology agnostic

Cons

• Unknown performance. The overhead with VXLAN is
much more severe than with MPLS or GRE

• Lack of visibility. Current policies do not apply

• Joining legacy servers to customer networks is not
possible

• BUM unicast replication

Our setup

• We chose VXLAN for encapsulation as it

was becoming a industry standard

• Currently only software components

participate in VXLAN. This can change in

the future as VXLAN in HW switches is

becoming more common

• We use MPLS-VPN to transport the

VXLAN traffic between DCs. This gives us

separation, some security and more

flexible ways to manage the traffic

• External access is handled by network

nodes that route between cloud networks

and traditional networks
DC 1 DC 2

neutron network

nodes

Hypervisors

plain

vlans

External networks

Internet/extranet

vxlan

vxlan

vxlan

neutron network

nodes

Hypervisors

plain

vlans

vxlan vxlan

vxlan

L3vpn for

inter-dc

vxlan

vxlan

vxlan

Example topology inside OpenStack

• Users can create complex network

topologies with multiple Virtual Routers

and networks spanning availability zones

• Inter-AZ networks can be used, for

example, database clustering or similar

applications

• Floating addresses can be allocated to

virtual routers that will do 1-to-1 NAT to a

desired VM

• Virtual Routers can also do SNAT for VMs

that do not have floating address. This can

be used for fetching updates from the

Internet etc.

Network-Public-AZ1 (172.17.0.0/16)

Availability Zone 1 Availability Zone 2

Compute Instances (VMs)

Inter-AZ Network (10.0.0.0/16)

Virtual router

in availability zone 1

Internet

default gw default gw

Virtual router

in availability zone 2

Network-Public-AZ2 (172.18.0.0/16)

Compute Instances (VMs)Internal-only

connectivity

default gw

L2 forwarding in OpenStack

• Modular Layer2 plugin introduced in Havana release

• Defines type and mechanism drivers to handle specific tasks

• Type drivers include: flat, local, gre, vlan and vxlan

• Mechanism drivers: openvswitch, linuxbridge, ofagent, l2pop and multiple

commercial options for example cisco, arista and nuage

• Multiple drivers can be loaded at the same time

• As we wanted a pure OSS solution, openvswitch was our choice

• Open vSwitch is a flexible switching solution for Linux that runs in userland

but has datapath-support in Linux Kernel

Open vSwitch + L2 Population

• Open vSwitch supports traffic steering with OpenFlow rules

• This allows L2 population mechanism driver to be implemented in OVS

• As every single endpoint is known inside the cloud, all L2 forwarding

entries can be pre-populated to nodes that need them

• Unknown unicast flooding is reduced

• BUM traffic should be minimized in overlay model as it becomes unicast

traffic in hypervisor egress

• VXLAN RFC defines Broadcast Communication and Mapping to Multicast but it is not

currently implemented in OVS

L2 Forwarding example

• L2 forwarding entries are
populated as OpenFlow entries by
the neutron-openvswitch-agent

• set_tunnel:0x3ec defines the VNID
for the traffic

• output is the logical VXLAN tunnel

• The last entry is the BUM entry as it
has multiple output actions

• BUM entry includes only
hypervisors that have VMs in this
particular logical network (partial
mesh)

• There is still source learning so
L2population is purely an
optimization feature Hypervisors 1

vm 1

fa:16:3e:56:49:43

VM 2

fa:16:3e:06:b3:12

Hypervisors 3

Network Node

Hypervisors 2

OVS

OVS OVS OVS

output:2

output:4 output:3

VM 3

fa:16:3e:8b:f7:85

[~]# ovs-ofctl dump-flows br-tun table=2

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=46928.050s, table=2, n_packets=2598, n_bytes=217047, idle_age=22,

priority=0,dl_dst=00:00:00:00:00:00/01:00:00:00:00:00 actions=resubmit(,20)

cookie=0x0, duration=46927.983s, table=2, n_packets=107661, n_bytes=6445182, idle_age=0,

priority=0,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=resubmit(,22)

[~]# ovs-ofctl dump-flows br-tun table=20 | grep resubmit

cookie=0x0, duration=50157.384s, table=20, n_packets=749, n_bytes=70306, idle_age=29,

priority=0 actions=resubmit(,22)

[~]# ovs-ofctl dump-flows br-tun dl_vlan=1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=45803.043s, table=20, n_packets=349, n_bytes=28186, idle_age=374,

priority=2,dl_vlan=1,dl_dst=fa:16:3e:8b:f7:85 actions=strip_vlan,set_tunnel:0x3ec,output:3

cookie=0x0, duration=45803.043s, table=20, n_packets=0, n_bytes=0, idle_age=45877,

priority=2,dl_vlan=1,dl_dst=fa:16:3e:56:49:43 actions=strip_vlan,set_tunnel:0x3ec,output:2

cookie=0x0, duration=45803.043s, table=20, n_packets=357, n_bytes=28943, idle_age=85,

priority=2,dl_vlan=1,dl_dst=fa:16:3e:06:b3:12 actions=strip_vlan,set_tunnel:0x3ec,output:4

cookie=0x0, duration=45877.851s, table=22, n_packets=2, n_bytes=84, idle_age=32287,

hard_age=45802, dl_vlan=1 actions=strip_vlan,set_tunnel:0x3ec,output:3,output:2,output:4

Unicast match

mcast match

Unknown match

Flooding action

OpenStack deployment

• As a whole, OpenStack deployment can be quite difficult and time

consuming. This applies especially to getting the system stable

• Most of our issues have been software issues

• Things are getting better by the day though

• Good dev and qa environments are your friends

• OpenStack by nature very distributed system so there is really no logical

central management point

• This is why configuration needs to be consistent in every component

• Do not try to install OpenStack by hand, use automation frameworks such as Chef, Puppet or

Ansible

Challenges - General

OpenStack deployment

• VXLAN is still quite new technology, the first Internet Draft was released in

Feb 2012

• It was designed as a encapsulation for virtualized datacenters

• It provides some entropy in the outer UDP header for hashing in L2 bundles

or ECMP

• Thus it fits better to an existing network than (NV)GRE

• Support has been available in Linux Kernel and OVS for quite some time

now

• There are still problems...

Challenges – VXLAN

OpenStack deployment

• ...which are not VXLAN problems but Ethernet problems

• As we moved to 10G NICs in servers we got dependent on NIC offload

features

• With 1514B ethernet frame size the packet rate will be over 800Kpps

• If we need to process every packet individually we quickly max out our CPUs

for interrupt handling

• Features such as GSO (tx) and GRO (rx) help us to handle the traffic by

combining packets belonging to a same flow

• But HW assisted features tend to only work if the IP protocol is TCP

Challenges – VXLAN

OpenStack deployment

• With VXLAN we need to look deeper into the packet

• Support in NICs is still quite rare

• Support in Linux kernel is quite new so recent Kernel is required (upstream

>= 3.14)

• Expect things to improve as more users choose VXLAN

• Traditional VLANs are still the only possibility if you need the best

performance possible

Challenges – VXLAN

Word from the sponsor

• Nebula launched public cloud offering Nebula Cloud 9.0 in November 2014

• First public cloud in Finland based in OpenStack

• We offer

• True multi-datacenter solution. Infrastructure is not shared between availability zones.

Networks can be terminated to either availability zone

• Compute instances ranging 1CPU 1GB to 16CPU 128GB

• Block storage in SSD, SAS and archive grades

• Object Storage based on CEPH where data is replicated to multiple datacenters

• SDN network services

• Dashboard, Orchestration and telemetry services

• Standard OpenStack APIs available

Dashboard

Dashboard

CLI

Thank you

Visit www.nebulacloud.fi for more information

