
ExaBGP Introduction
and	

Real	Life	Use	Cases
Trex Workshop	2016

Quick	intro

• Me
• Anton	Aksola (aakso@Twitter,IRCNet,Github)
• Network	Architect	/	Software	Developer	@Nebula	Oy/AS29422
• Working	with	OpenStack	 and	related	cloudy	 things
• Doing	software	development	around	OpenStack	(patches	and	features)
• Previously	 worked	as	a	network	engineer	for	about	10	years

• Not	affiliated	with	Exa Networks

ExaBGP

• ExaBGP is	a	highly	 flexible	BGP	speaker	that	allows	you	to	control	BGP	
announcements	 programmatically

• It	can	also	receive	BGP	Updates	from	peers	and	feed	those	 to	your	application	in	
parsed	form

• Takes	care	of	all	the	details	running	 BGP	State	Machine,	keepalives and	protocol	
encoding

• Supports	 IPv4/IPv6,	L2VPN,	L3VPN,	FlowSpec etc.
• You	can	concentrate	on	your	application	and	enjoy	 technologies	 such	as	

anycasting

ExaBGP

• ExaBGP should	 not	be	compared	to	Quagga	or	BIRD	as	ExaBGPdoes	not interact	
with	the	operating	system	to	apply	any	announcements	 to	the	routing	 table

• Currently	it	doesn’t	 support	 any	Route	Server	or	Route	Reflector	features
• Focus	is	clearly	in	delivering	easy	BGP	interface	for	applications	and	scripts	to	

consume

Basic	Example

ExaBGPProcess

#!/bin/bash
…

myapp.sh

announce route 2001:db8::1/128 next-hop 2001:db8::2

• Integration	is	done	by	configuring	
your	application	in	ExaBGP’s
configuration	 file

• ExaBGP starts	your	app	as	a	
subprocess

• Unix	Pipes	are	used	to	do	IO
• You	can	announce/withdraw	

routes,	add/remove	neighbors,	
ask	state	etc.

stdin stdout

Basic	Example

Router-A
198.51.100.10

ExaBGPProcess
BGP

#!/bin/bash
…

myapp.sh

announce route 2001:db8::1/128 next-hop 2001:db8::2

neighbor 198.51.100.10 {
router-id 1.1.1.1;
local-address 198.51.100.1;
local-as 65510;
peer-as 65511;
family {

ipv4 unicast;
ipv6 unicast;

}
process myapp {

run myapp.sh;
}

}

ExaBGPconfiguration stdin stdout

Use	case	– Anycasted Service

• The	most	obvious	use	case	is	to	use	ExaBGP to	announce	 reachability	information	
for	our	app

• The	app	would	be	served	from	an	IP	address	that	is	being	announced	potentially	
by	multiple	ExaBGP instances	in	different	servers

• We	would	put	that	IP	address	to	our	 loopback	interface
• We	would	monitor	 the	application	from	the	script	that	ExaBGP starts
• The	script	would	announce/withdraw	 the	address	according	to	the	state	of	the	

app

Use	case	– Anycasted Service
Helper	Script	– monitor.sh

#!/bin/bash

IP=$1; shift
NEXTHOP=$1; shift
CMD=$@

state="DOWN"
while true; do

sleep 2
if $($CMD 2>/dev/null 1>/dev/null); then

if ["$state" == "DOWN"]; then
echo "announce route $IP next-hop $NEXTHOP"
state="UP"

fi
else

if ["$state" == "UP"]; then
echo "withdraw route $IP next-hop $NEXTHOP"
state="DOWN"

fi
fi

done

Use	case	– Anycasted Service
Configuration	–monitoring	a	web	server	using	curl

neighbor 198.51.100.10 {
router-id 1.1.1.1;
local-address 198.51.100.1;
local-as 65510;
peer-as 65511;
family {

ipv4 unicast;
ipv6 unicast;

}
process monitor-myapp {

run monitor.sh 192.0.2.1/32 198.51.100.1 curl –s –f http://localhost;
}

}

Use	case	– Anycasted Service

• The	script	I	showed	is	just	for	illustration
• For	real	stuff	you	should	use	the	healthcheck module	 that	comes	with	ExaBGP
• It	provides	more	configurable	 behavior	and	more	features

• med	adjustment	instead	of	withdrawal
• hysteresis	mitigation	with	rise/fall	 values
• loopback	 address	population
• hooks	 that	execute	on	state	change	(for	alerting and	reporting)
• logging

Use	case	– Anycasted Service
Configuration	– using	healthcheckmodule

neighbor 198.51.100.10 {
router-id 1.1.1.1;
local-address 198.51.100.1;
local-as 65510;
peer-as 65511;
family {

ipv4 unicast;
ipv6 unicast;

}
process monitor-myapp {

run python –m exabgp healthcheck --cmd ”curl –s –f http://localhost”
--ip 192.0.2.1 --next-hop 198.51.100.1;

}
}

Our	experiences

• Our	company	has	been	using	ExaBGPand	healthcheck module	 for	several	years	in	
multi-datacenter	deployments

• ExaBGP seems	to	be	very	stable	and	we	haven’t	had	any	real	issues	with	it
• The	fact	that	it	has	no	other	dependencies	 than	Python	simplifies	 the	deployment
• It	by	default	doesn’t	 run	or	require	a	TCP	listener	(you	can	enable	it	though)
• Recently	we	had	a	new	project	that	also	required	anycasting so	ExaBGP was	again	

used

Case	study	- NELB

• Nebula	Elastic	Load	Balancer	(Load	Balancer	as	a	Service)
• Distributed	system	with	public	API,	controller	and	agent	nodes
• Dynamically	allocated	IPv4	and	IPv6	addresses	need	to	be	announced	 to	PE	

routers
• Load	Balancers	can	come	and	go	so	routes	need	be	quickly	announced	 and	

withdrawed
• Previous	state	must	be	recovered	in	case	of	a	failure

Case	study	- NELB

• Each	load	balancer	has	
minimum	 of	3	IP	addresses

• Agent	monitors	and	locally	
repairs	load	balancers	if	
they	crash

• Provisioning	 requests	come	
from	the	Controller	which	
has	full	 view	of	the	whole	
system

• How	to	integrate	ExaBGP
into	this	system?

Agent	Node

Agent
Process

LB LB

LB LB

Message	Bus

Agent	monitors	
and	managesProvisioning	

requests	from	
Controller	node

Case	study	- NELB

• We	decided	 to	run	ExaBGP
on	each	Agent	node

• Agent	process	has	the	local	
state	so	we	need	another	
process	ExaBGP can	start	
(the	monitor)

• Agent	and	ExaBGP should	
be	loosely	coupled	so	we	
needed	an	event	system

• The	monitor	 process	
translates	events	to	ExaBGP
commands

Agent	Node

Agent
Process

LB LB

LB LB

Message	Bus

Agent	monitors	
and	managesProvisioning	

requests	from	
Controller	node

ExaBGPProcess

Monitor

Event	server

Events	via	Unix	
domain	socket	
connection

Case	study	- NELB
Agent	Node

/build/bin$./monitor --monitor.outputformat=exabgp --monitor.exabgp.ipv4nh=198.51.100.1 --
monitor.exabgp.ipv6nh=2001:db8::2 --monitor.socket=unix:///run/nelb_events.sock
DEBU[0000] client starting component=client pkg=agent/monitor
DEBU[0000] connected action=connect component=client pkg=agent/monitor
DEBU[0000] start worker component=client pkg=agent/monitor worker=connection
DEBU[0000] start worker component=client pkg=agent/monitor worker=output_exabgp
announce route 192.168.0.1/32 next-hop 198.51.100.1
announce route 192.168.0.0/32 next-hop 198.51.100.1
announce route fc08::b0d:185f:5e9f:6261/128 next-hop 2001:db8::2
withdraw route 192.168.0.1/32 next-hop 198.51.100.1
withdraw route 192.168.0.0/32 next-hop 198.51.100.1
withdraw route fc08::b0d:185f:5e9f:6261/128 next-hop 2001:db8::2
announce route 192.168.0.3/32 next-hop 198.51.100.1
announce route 192.168.0.2/32 next-hop 198.51.100.1
announce route fc08::d275:c141:3fd4:1801/128 next-hop 2001:db8::2
announce route 192.168.0.5/32 next-hop 198.51.100.1
announce route 192.168.0.4/32 next-hop 198.51.100.1
announce route fc08::3561:fa53:47e0:1fbc/128 next-hop 2001:db8::2

Initial	replay	of	state	on	connect

Load	balancer	was	deleted

Two	more	load	balancers	
were	provisioned

More	use	cases

• Remotely	Triggered	Blackholing (RTBH)
• BGP	commander:	https://github.com/crazed/bgpcommander
• Integrates	ExaBGPto	etcd to	allow	you	to	inject	arbitrary	announcements	 via	etcd
• You	could	also	inject	Flow	routes	to	do	fine	grained	traffic	control

• More	advanced	DoS detection	with	RTBH
• Fastnetmon:	https://github.com/pavel-odintsov/fastnetmon
• Integrated	solution	 that	can	detect	attacks	from	sflow/pcap sources	and	announce	blackhole routes	

via	ExaBGP

No	production	experience	on	these	but	worth	looking	into

Alternatives

• While	ExaBGP is	great	for	simple	applications	sometimes	the	interfacing	via	
subprocesses seems	somewhat	weird

• One	interesting	recent	alternative	is	GoBGP
• It	uses	 gRPC for	integration
• They	have	recently	released	a	guide	how	to	embed	GoBGP into	your	Go	application
• RR,	Route	Server	and	Policy	support

• RYU	BGP	Speaker	 library
• Clean	Python	API	to	embed	BGP	into	your	Python	 application
• Features	seem	to	be	quite	limited	compared	to	ExaBGP

• BaGPipe BGP
• Orange’s	ExaBGPfork	that	is	more	focused	in	delivering	IP-VPN/EVPN	for	VMs.	It	has	dataplane

integration	with	Open	vSwitch

Thank	you

ExaBGP:	github.com/Exa-Networks/exabgp

My	contact	details:
aakso@iki.fi /	anton.aksola@nebula.fi

Github.com/aakso
linkedin.com/in/aakso

